IRIS: A novel integrated instrument for co‐registered MA‐XRF mapping and VNIR‐SWIR hyperspectral imaging

Author:

Occhipinti Michele1ORCID,Alberti Roberto1,Parsani Tommaso1,Dicorato Claudio1,Tirelli Paolo1,Gironda Michele1,Tocchio Alessandro1,Frizzi Tommaso1

Affiliation:

1. XGLab SRL, Bruker Nano Analytics Milano Italy

Abstract

AbstractThe combination of complementary techniques for materials analysis can play a key role in both art conservation and academic research. Nowadays, the correlation of x‐ray fluorescence (XRF) with hyperspectral reflectance imaging in the visible and infrared region has become a valuable tool for palette identification, painting techniques studies and for the diagnostic support dedicated to restoration and conservation. Moreover, both techniques enable researchers to reveal fascinating underpaintings, “pentimenti”, or even preparatory drawings offering new details on the creative process of the artist. This background has been a strong motivation for the development of a new multimodal tool for art and conservation: IRIS. IRIS is a mobile and reconfigurable scanner designed to address a wide range of demanding application, exploiting the opportunities given by simultaneous MA‐XRF and hyperspectral reflectance scanning in the visible‐near‐infrared (VNIR) and short‐wave‐infrared (SWIR) range from 400 to 2500 nm. The system has been designed for in‐situ, fast and non‐invasive scanning of the sample without compromising spectral resolution and high throughput performance. The scanner acquires co‐registered XRF/VNIR‐SWIR data, thus allowing the user to obtain the maximum profit from their possible correlated information: the two techniques can provide enhanced or complementary information on the same spot of analysis with minimum effort in terms of data processing and no need for spatial alignment. In the present work, the qualitative and quantitative performance of IRIS are explored, together with the presentation of in‐lab analysis on reference samples and a brief insight on a real case‐study.

Publisher

Wiley

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3