Coil sketching for computationally efficient MR iterative reconstruction

Author:

Oscanoa Julio A.12ORCID,Ong Frank3ORCID,Iyer Siddharth S.4ORCID,Li Zhitao2ORCID,Sandino Christopher M.3ORCID,Ozturkler Batu3,Ennis Daniel B.2ORCID,Pilanci Mert3,Vasanawala Shreyas S.2ORCID

Affiliation:

1. Department of Bioengineering Stanford University Stanford California USA

2. Department of Radiology Stanford University Stanford California USA

3. Department of Electrical Engineering Stanford University Stanford California USA

4. Department of Electrical Engineering and Computer Science Massachussetts Institute of Technology Cambridge Massachussetts USA

Abstract

AbstractPurposeParallel imaging and compressed sensing reconstructions of large MRI datasets often have a prohibitive computational cost that bottlenecks clinical deployment, especially for three‐dimensional (3D) non‐Cartesian acquisitions. One common approach is to reduce the number of coil channels actively used during reconstruction as in coil compression. While effective for Cartesian imaging, coil compression inherently loses signal energy, producing shading artifacts that compromise image quality for 3D non‐Cartesian imaging. We propose coil sketching, a general and versatile method for computationally‐efficient iterative MR image reconstruction.Theory and MethodsWe based our method on randomized sketching algorithms, a type of large‐scale optimization algorithms well established in the fields of machine learning and big data analysis. We adapt the sketching theory to the MRI reconstruction problem via a structured sketching matrix that, similar to coil compression, considers high‐energy virtual coils obtained from principal component analysis. But, unlike coil compression, it also considers random linear combinations of the remaining low‐energy coils, effectively leveraging information from all coils.ResultsFirst, we performed ablation experiments to validate the sketching matrix design on both Cartesian and non‐Cartesian datasets. The resulting design yielded both improved computatioanal efficiency and preserved signal‐to‐noise ratio (SNR) as measured by the inverse g‐factor. Then, we verified the efficacy of our approach on high‐dimensional non‐Cartesian 3D cones datasets, where coil sketching yielded up to three‐fold faster reconstructions with equivalent image quality.ConclusionCoil sketching is a general and versatile reconstruction framework for computationally fast and memory‐efficient reconstruction.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3