Affiliation:
1. School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 611731 China
2. James Watts School of Engineering University of Glasgow Glasgow G12 8QQ UK
Abstract
Rapid advances in wearable sensing technology have demonstrated unprecedented opportunities for artificial intelligence. In comparison with the traditional hand‐held electrolarynx, a wearable and intelligent artificial throat with sound‐sensing ability is a more comfortable and versatile method to assist disabled people with communication. Herein, a piezoresistive sensor with a novel configuration is demonstrated, which consists of polystyrene (PS) spheres as microstructures sandwiched between silver nanowires and reduced graphene oxide layers. In fact, changes in the device's conducting patterns are obtained by spay‐coating the various weight ratios and sizes of the PS microspheres, which is a fast and convenient way to establish microstructures for improving sensitivity. The wearable artificial throat device also exhibits high sensitivity, fast response time, and ultralow intensity level detection. Moreover, the device's excellent mechanical–electrical performance allows it to detect subtle throat vibrations that can be converted into controllable sounds. In this case, an intelligent artificial throat is achieved by combining a deep learning algorithm with a highly flexible piezoresistive sensor to successfully recognize five different words (help, sick, patient, doctor, and COVID) with an accuracy exceeding 96%. Herein, new opportunities in voice control as well as other human‐machine interface applications are opened.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Sichuan Province Science and Technology Support Program
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献