Affiliation:
1. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Physics Beijing Institute of Technology Beijing 100081 China
2. Beijing Key Laboratory of Millimeter wave and Terahertz Techniques School of Information and Electronics Beijing Institute of Technology Beijing 100081 China
Abstract
The key obstacle to the realization of a scalable quantum computer is overcoming environmental and control errors. Topological quantum computation attracts great attention because it emerges as one of the most promising approaches to solving these problems. Various theoretical schemes for building topological quantum computation have been proposed. However, experimental implementation has always been a great challenge because it has proved to be extremely difficult to create and manipulate topological qubits in real systems. Therefore, topological quantum computation has not been realized in experiments yet. Herein, the first experimental simulation of topological quantum computation with classical circuits is reported. Based on the proposed new scheme with circuits, not only Majorana‐like edge states are simulated experimentally, but also T junctions are constructed for simulating the braiding process. Furthermore, the feasibility of simulated topological quantum computing through a set of one‐ and two‐qubit unitary operations is demonstrated. Finally, the simulation of Grover's search algorithm demonstrates that simulated topological quantum computation is ideally suited for such tasks. The developed circuit‐based topological quantum‐computing simulator can provide important references for developing future topological quantum circuits.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献