Experimental Simulation of Topological Quantum Computing with Classical Circuits

Author:

Zou Deyuan1,Pan Naiqiao1,Chen Tian1,Sun Houjun2,Zhang Xiangdong1ORCID

Affiliation:

1. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Physics Beijing Institute of Technology Beijing 100081 China

2. Beijing Key Laboratory of Millimeter wave and Terahertz Techniques School of Information and Electronics Beijing Institute of Technology Beijing 100081 China

Abstract

The key obstacle to the realization of a scalable quantum computer is overcoming environmental and control errors. Topological quantum computation attracts great attention because it emerges as one of the most promising approaches to solving these problems. Various theoretical schemes for building topological quantum computation have been proposed. However, experimental implementation has always been a great challenge because it has proved to be extremely difficult to create and manipulate topological qubits in real systems. Therefore, topological quantum computation has not been realized in experiments yet. Herein, the first experimental simulation of topological quantum computation with classical circuits is reported. Based on the proposed new scheme with circuits, not only Majorana‐like edge states are simulated experimentally, but also T junctions are constructed for simulating the braiding process. Furthermore, the feasibility of simulated topological quantum computing through a set of one‐ and two‐qubit unitary operations is demonstrated. Finally, the simulation of Grover's search algorithm demonstrates that simulated topological quantum computation is ideally suited for such tasks. The developed circuit‐based topological quantum‐computing simulator can provide important references for developing future topological quantum circuits.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Computing in Pharmaceutical Science;Applications and Principles of Quantum Computing;2024-01-31

2. Large-chiral-number corner modes in Z -class higher-order topolectrical circuits;Physical Review Applied;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3