Data‐Driven Design of Electrically Conductive Nanocomposite Materials: A Case Study of Acrylonitrile–Butadiene–Styrene/Carbon Nanotube Binary Composites

Author:

So Changrok1,Kim Young-Shin2,Park Jong Hyuk3,Kim Gwan-Yeong4,Cha Daniel5,Ko Jong Hwan6,Kang Boseok2ORCID

Affiliation:

1. Department of Artificial Intelligence Sungkyunkwan University (SKKU) Suwon 16419 South Korea

2. SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering Sungkyunkwan University (SKKU) Suwon 16419 South Korea

3. Soft Hybrid Materials Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 South Korea

4. R&D Center Daejin Advanced Materials Inc. Suwon 16229 South Korea

5. SKKU Department of Computer Science and Engineering Sungkyunkwan University (SKKU) Suwon 16419 South Korea

6. Department of Electrical and Computer Engineering Sungkyunkwan University (SKKU) Suwon 16419 South Korea

Abstract

The field of polymer‐based nanoscience has always been of significant interest in the search for polymer/carbon nanotube (CNT) nanocomposites with optimized material properties for new applications. Herein, it is demonstrated that data collected from the online literature can be used to develop an efficient deep learning model to design acrylonitrile–butadiene–styrene (ABS)/CNT binary composites. A dataset of 14 945 data points is constructed from 110 studies. The results demonstrate that compared with a vanilla deep regression model, the proposed model achieves a 26% lower average mean absolute error and an accuracy of 80.6%, which is 16.2% higher than the vanilla deep regression model in predicting the six electrical and mechanical properties of target ABS/CNT composites. In addition, a Monte Carlo simulation integrated with the developed deep neural network (DNN) model effectively screens input variables for users and thus appropriately guides them to manufacture a composite product with desired physical properties.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3