Information Processing Capacity of Spintronic Oscillator

Author:

Tsunegi Sumito12,Kubota Tomoyuki3,Kamimaki Akira1,Grollier Julie4,Cros Vincent4,Yakushiji Kay1,Fukushima Akio1,Yuasa Shinji1,Kubota Hitoshi1,Nakajima Kohei3,Taniguchi Tomohiro1ORCID

Affiliation:

1. Research Center for Emerging Computing Technologies National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8568 Japan

2. PRESTO Japan Science and Technology Agency (JST) Saitama 332-0012 Japan

3. Graduate School of Information Science and Technology The University of Tokyo Bunkyo-ku Tokyo 113-8656 Japan

4. Unité Mixte de Physique CNRS, Thales Université Paris-Saclay 91767 Palaiseau France

Abstract

Physical reservoir computing is a framework that enables energy‐efficient information processing by using physical systems. Nonlinear dynamics in physical systems provide a computational capability that is unique to reservoirs. It is, however, difficult to find an appropriate task for a reservoir because of the complexity of nonlinear information processing. The information processing capacity has recently been used to clarify systematically the tasks that are solved by reservoirs; it quantifies the memory capacity of reservoirs in accordance with the order of nonlinearity. Herein, an experimental evaluation of the information processing capacity of a spintronic oscillator consisting of nanostructured ferromagnets is reported. The spintronic reservoir state is electrically manipulated by adding a delayed‐feedback circuit. The total capacity reaches a maximum of 5.6 at the edge of the echo state property. A trade‐off between the linear and nonlinear components of the capacity is also found. The result can be used to better understand the nonlinear information processing in reservoirs and to find good matches between reservoirs and tasks. As an example, a function‐approximation task is performed and it is found that it can be efficiently solved when the reservoir state is appropriately tuned so that its information processing capacity matches that of the task.

Funder

New Energy and Industrial Technology Development Organization

Basic Energy Sciences

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3