In‐Memory Search for Highly Efficient Image Retrieval

Author:

Yu Yingjie12,Yang Ling12,Zhou Houji2,Zhao Ruizhe2,Li Yi12ORCID,Tong Hao12,Miao Xiangshui12

Affiliation:

1. Hubei Yangtze Memory Laboratories Wuhan 430205 China

2. School of Integrated Circuits Huazhong University of Science and Technology Wuhan 430074 China

Abstract

Finding similar images in real time plays a key role in information retrieval and serves as an indispensable function of the search engine. However, image retrieval involves massive distance computation. With the increase in image data volume and dimension, distance computation is suffering from huge power consumption and high computational complexity. Despite the remarkable advantages in energy efficiency shown by nonvolatile content addressable memory (nvCAM)‐based in‐memory search, achieving software‐comparable search accuracy remains a critical challenge under the impact of device variations and other nonideal factors. Here, a heterogeneous image retrieval system combining highly parallel in‐memory search with a high‐precision digital system is reported. Hamming distance (HD) can be calculated in situ with a few memory read operations on the memristor‐based CAM, and several similar images are fetched for further high‐precision rerank in the digital system. This heterogeneous computing system shows high energy efficiency (50×) compared to the CPU and higher search accuracy than the fully in‐memory computing method, thus alleviating the efficiency bottleneck of CPU‐based image retrieval.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Reference41 articles.

1. Content-based image retrieval at the end of the early years

2. J.Wan D.Wang S. H.Hoi P.Wu J.Zhu Y.Zhang J.Li presented atProc. of the 22nd ACM Int. Conference on Multimedia Orlando FL November 2014.

3. Content-Based Medical Image Retrieval: A Survey of Applications to Multidimensional and Multimodality Data

4. Y.Liu Y.Huang S.Zhang D.Zhang N.Ling presented at2017 12th IEEE Conf. on Industrial Electronics and Applications (ICIEA) Siem Reap June 2017.

5. Y.Zhang P.Pan Y.Zheng K.Zhao Y.Zhang X.Ren R.Jin presented atProc. of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining London August 2018.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3