Aggregation Volume Estimator–Based Offline Programming Guidance of Magnetic Nanoparticles in the Realistic Rat‐Brain Vasculature Model

Author:

Park Myungjin1,Oh Seungjun1,Anh Le Tuan2,Yoon Jungwon1ORCID

Affiliation:

1. School of Integrated Technology Gwangju Institute of Science and Technology Institute of Integrated Technology 123 Cheomdan Gwagiro Gwangju 61005 Republic of Korea

2. Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale 13400 E Shea Blvd Scottsdale AZ 85259 USA

Abstract

Targeted delivery of magnetic nanoparticles (MNPs) to an area of a blood vessel with fluidic flow is hampered by the lack of a suitable real‐time imaging modality for MNPs, the control system complexity, and low targeting performance. Herein, an offline programming guidance (OLPG) scheme for aggregated MNPs is proposed based on a real‐time aggregation volume estimator. The proposed aggregation volume estimator based on a magnetic drug‐targeting simulator reflects volume changes of aggregated MNPs; hence, it can model a magnetic force acting on aggregated MNPs in real time while enhancing targeting performance. The proposed guidance system is evaluated using a simulation testbed and in vitro model of the rat brain, which yields comparable results at different fluid viscosities, flow velocities, target areas, and flow types. The OLPG with the aggregation volume estimator improves targeting performance by 116%–409% compared with the default mode, and by 111%–180% compared to the performance without the aggregation volume estimator. Furthermore, a guidance margin predicts enhanced targeting performance (root‐mean‐square error < 5%) irrespective of the flow environment. The proposed guidance strategy has the potential to overcome the problems caused by the lack of an imaging modality, control‐system complexity, and low targeting performance.

Funder

Korea Evaluation Institute of Industrial Technology

Korea Medical Device Development Fund

National Research Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3