Toward Collaborative Multitarget Search and Navigation with Attention‐Enhanced Local Observation

Author:

Xiao Jiaping1ORCID,Pisutsin Phumrapee1ORCID,Feroskhan Mir1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

Collaborative multitarget search and navigation (CMTSN) is highly demanded in complex missions such as rescue and warehouse management. Traditional centralized and decentralized approaches fall short in terms of scalability and adaptability to real‐world complexities such as unknown targets and large‐scale missions. This article addresses this challenging CMTSN problem in three‐dimensional spaces, specifically for agents with local visual observation operating in obstacle‐rich environments. To overcome these challenges, this work presents the POsthumous Mix‐credit assignment with Attention (POMA) framework. POMA integrates adaptive curriculum learning and mixed individual‐group credit assignments to efficiently balance individual and group contributions in a sparse reward environment. It also leverages an attention mechanism to manage variable local observations, enhancing the framework's scalability. Extensive simulations demonstrate that POMA outperforms a variety of baseline methods. Furthermore, the trained model is deployed over a physical visual drone swarm, demonstrating the effectiveness and generalization of our approach in real‐world autonomous flight.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3