Video Anomaly Detection Utilizing Efficient Spatiotemporal Feature Fusion with 3D Convolutions and Long Short‐Term Memory Modules

Author:

Ul Amin Sareer1,Kim Bumsoo2,Jung Yonghoon3,Seo Sanghyun2,Park Sangoh1ORCID

Affiliation:

1. Department of Computer Science and Engineering Chung‐Ang University Seoul 06974 South Korea

2. College of Art and Technology Chung‐Ang University Anseong 17546 South Korea

3. Department of Advanced Imaging Science Multimedia & Film Chung‐Ang University Seoul 06974 South Korea

Abstract

Surveillance cameras produce vast amounts of video data, posing a challenge for analysts due to the infrequent occurrence of unusual events. To address this, intelligent surveillance systems leverage AI and computer vision to automatically detect anomalies. This study proposes an innovative method combining 3D convolutions and long short‐term memory (LSTM) modules to capture spatiotemporal features in video data. Notably, a structured coarse‐level feature fusion mechanism enhances generalization and mitigates the issue of vanishing gradients. Unlike traditional convolutional neural networks, the approach employs depth‐wise feature stacking, reducing computational complexity and enhancing the architecture. Additionally, it integrates microautoencoder blocks for downsampling, eliminates the computational load of ConvLSTM2D layers, and employs frequent feature concatenation blocks during upsampling to preserve temporal information. Integrating a Conv‐LSTM module at the down‐ and upsampling stages enhances the model's ability to capture short‐ and long‐term temporal features, resulting in a 42‐layer network while maintaining robust performance. Experimental results demonstrate significant reductions in false alarms and improved accuracy compared to contemporary methods, with enhancements of 2.7%, 0.6%, and 3.4% on the UCSDPed1, UCSDPed2, and Avenue datasets, respectively.

Funder

Korea Institute for Advancement of Technology

Publisher

Wiley

Reference53 articles.

1. Anomaly detection

2. W.Liu W.Luo D.Lian S.Gao inProc. of the IEEE Conf. on Computer Vision and Pattern Recognition IEEE Piscataway NJ2018 pp.6536–6545.

3. Integrating prediction and reconstruction for anomaly detection

4. H.Vu T. D.Nguyen T.Le W.Luo D.Phung inProc. of the Thirty‐Third AAAI Conf. on Artificial Intelligence and Thirty‐First Innovative Applications of Artificial Intelligence Conf. and Ninth AAAI Symp. on Educational Advances in Artificial Intelligence AAAI’19/IAAI’19/EAAI’19 AAAI Press Washington DC2019.

5. A.Markovitz G.Sharir I.Friedman L.Zelnik‐Manor S.Avidan inProc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition IEEE Piscataway NJ2020 pp.10539–10547.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3