Closed‐Loop Optimization of Soft Sensor Morphology Using 3D Printing of Electrically Conductive Hydrogel

Author:

Sugiura Sojiro1ORCID,Hardman David2,George Thuruthel Thomas23ORCID,Hasegawa Yasuhisa1,Iida Fumiya2ORCID

Affiliation:

1. Intelligent Robotics and Biomechatronics Laboratory Nagoya University Nagoya 464‐8603 Japan

2. Bio-Inspired Robotics Laboratory University of Cambridge Cambridge CB2 1PZ UK

3. Department of Computer Science University College London London WC1E 6BT UK

Abstract

Soft sensing technologies provide a novel alternative for state estimation in wearables and robotic systems. They allow one to capture intrinsic state parameters in a highly conformable manner. However, due to the nonlinearities in the materials that make up a soft sensor, it is difficult to develop accurate models of these systems. Consequently, design of these soft sensors is largely user defined or based on trial and error. Since these sensors conform and take the shape of the sensing body, these issues are further exacerbated when they are installed. Herein, a framework for the automated design optimization of soft sensors using closed‐loop 3D printing of a recyclable hydrogel‐based sensing material is presented. The framework allows direct printing of the sensor on the sensing body using visual feedback, evaluates the sensor performance, and iteratively improves the sensor design. Following preliminary investigations into the material and morphology parameters, this is demonstrated through the optimization of a sensorized glove which can be matched to specific tasks and individual hand shapes. The glove's sensors are tuned to respond only to particular hand poses, including distinguishing between two similar tennis racket grip techniques.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3