Vision‐Based Online Key Point Estimation of Deformable Robots

Author:

Zheng Hehui12ORCID,Pinzello Sebastian1,Cangan Barnabas Gavin1ORCID,Buchner Thomas J. K.1ORCID,Katzschmann Robert K.12ORCID

Affiliation:

1. Soft Robotics Lab ETH Zurich Tannenstrasse 3 Zürich 8092 Switzerland

2. ETH AI Center ETH Zurich Andreasstrasse 5 Zürich 8092 Switzerland

Abstract

The precise control of soft and continuum robots requires knowledge of their shape, which has, in contrast to classical rigid robots, infinite degrees of freedom. To partially reconstruct the shape, proprioceptive techniques use built‐in sensors, resulting in inaccurate results and increased fabrication complexity. Exteroceptive methods so far rely on expensive tracking systems with reflective markers placed on all components, which are infeasible for deformable robots interacting with the environment due to marker occlusion and damage. Here, a regression approach is presented for three‐dimensional key point estimation using a convolutional neural network. The proposed approach uses data‐driven supervised learning and is capable of online markerless estimation during inference. Two images of a robotic system are captured simultaneously at 25 Hz from different perspectives and fed to the network, which returns for each pair the parameterized key point or piecewise constant curvature shape representations. The proposed approach outperforms markerless state‐of‐the‐art methods by a maximum of 4.5% in estimation accuracy while being more robust and requiring no prior knowledge of the shape. Online evaluations on two types of soft robotic arms and a soft robotic fish demonstrate the method's accuracy and versatility on highly deformable systems.

Funder

Eidgenössische Technische Hochschule Zürich

Publisher

Wiley

Reference39 articles.

1. Y.Yamanaka S.Katagiri H.Nabae K.Suzumori G.Endo inIEEE/SICE Int. Symp. Syst. Integration IEEE Piscataway NJ2020 pp.87–92.

2. A dual-mode soft gripper for food packaging

3. Hard questions for soft robotics

4. An Overview of Soft Robotics

5. M.Park Y.Ohm D.Kim Y.‐L.Park inProc. IEEE Int. Conf. Soft Robot. IEEE Piscataway NJ2019 pp.384–390.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3