Time‐Lapse Image Classification Using a Diffractive Neural Network

Author:

Rahman Md Sadman Sakib123,Ozcan Aydogan123ORCID

Affiliation:

1. Electrical and Computer Engineering Department University of California Los Angeles Los Angeles CA 90095 USA

2. Bioengineering Department University of California Los Angeles Los Angeles CA 90095 USA

3. California NanoSystems Institute (CNSI) University of California Los Angeles Los Angeles CA 90095 USA

Abstract

Diffractive deep neural networks (D2NNs), comprised of spatially engineered passive surfaces, collectively process optical input information at the speed of light propagation through a thin diffractive volume, without any external computing power. Diffractive networks were demonstrated to achieve all‐optical object classification and perform universal linear transformations. Herein, a “time‐lapse” image classification scheme using a diffractive network is demonstrated for the first time, significantly advancing its classification accuracy and generalization performance on complex input objects by using the lateral movements of the input objects and/or the diffractive network, relative to each other. In a different context, such relative movements of the objects and/or the camera are routinely being used for image super‐resolution applications; inspired by their success, a time‐lapse diffractive network is designed to benefit from the complementary information content created by controlled or random lateral shifts. The design space and performance limits of time‐lapse diffractive networks are numerically explored, revealing a blind testing accuracy of 62.03% on the optical classification of objects from the CIFAR‐10 dataset. This constitutes the highest inference accuracy achieved so far using a single diffractive network on the CIFAR‐10 dataset. Time‐lapse diffractive networks will be broadly useful for the spatiotemporal analysis of input signals using all‐optical processors.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

General Medicine

Reference42 articles.

1. Machine learning: Trends, perspectives, and prospects

2. Deep learning

3. W.Knight https://www.wired.com/story/ai-great-things-burn-planet/(accessed: August 2022).

4. R.Toews https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/(accessed: August 2022).

5. The Future of Deep Learning Is Photonic: Reducing the energy needs of neural networks might require computing with light

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3