ClassyPose: A Machine‐Learning Classification Model for Ligand Pose Selection Applied to Virtual Screening in Drug Discovery

Author:

Tran‐Nguyen Viet‐Khoa1ORCID,Camproux Anne‐Claude1,Taboureau Olivier1

Affiliation:

1. Unité de Biologie Fonctionnelle et Adaptative Université Paris Cité, CNRS UMR8251, INSERM U1133 Paris F‐75013 France

Abstract

Determining the target‐bound conformation of a drug‐like molecule is a crucial step in drug design, as it affects the outcome of virtual screening (VS), and paves the way for hit‐to‐lead and lead optimization. While most docking programs usually manage to produce at least a near‐native pose for a bioactive molecule inside its binding pocket, their integrated classical scoring functions (SFs) generally fail to prioritize this pose. Many studies have been carried out to tackle this SF problem, offering multiple pose refinement and/or classification methods, albeit with limitations. This study presents a new support vector machine model for pose classification, called “ClassyPose”, which predicts the probability that a receptor‐bound ligand conformation could be near‐native, without any additional pose optimization step. Trained on protein‐ligand extended connectivity features extracted from over 21 600 crystal and docking poses of diverse ligands, this model outperformed other machine‐learning algorithms and three existing SFs in terms of docking power, identifying the native ligand pose as top‐ranked solution for more than 90% of entries in two test sets. It also achieved high specificity (above 0.96), and improved VS performance when used for pose selection. This efficient, user‐friendly tool and all related data are available at https://github.com/vktrannguyen/Classy_Pose.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3