Deep Reinforcement Learning‐Based Air Defense Decision‐Making Using Potential Games

Author:

Zhao Minrui1ORCID,Wang Gang1,Fu Qiang1ORCID,Guo Xiangke1,Li Tengda1

Affiliation:

1. College of Air and Missile Defense Air Force Engineering University No.1 Changle East Road Xi'an Shaanxi 710051 China

Abstract

This study addresses the challenge of intelligent decision‐making for command‐and‐control systems in air defense combat operations. Current autonomous decision‐making systems suffer from limited rationality and insufficient intelligence during operation processes. Recent studies have proposed methods based on deep reinforcement learning (DRL) to address these issues. However, DRL methods typically face challenges related to weak interpretability, lack of convergence guarantees, and high‐computing power requirements. To address these issues, a novel technique for large‐scale air defense decision‐making by combining a DRL technique with game theory is discussed. The proposed method transforms the target assignment problem into a potential game that provides theoretical guarantees for Nash equilibrium (NE) from a distributed perspective. The air‐defense decision problem is decomposed into separate target selection and target assignment problems. A DRL method is used to solve the target selection problem, while the target assignment problem is translated into a target assignment optimization game. This game is proven to be an exact potential game with theoretical convergence guarantees for an NE. Having simulated the proposed decision‐making method using a digital battlefield environment, the effectiveness of the proposed method is demonstrated.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3