Design of CLARI: A Miniature Modular Origami Passive Shape‐Morphing Robot

Author:

Kabutz Heiko1ORCID,Jayaram Kaushik1ORCID

Affiliation:

1. Paul M. Rady Department of Mechanical Engineering University of Colorado Boulder CO 80309 USA

Abstract

Miniature robots provide unprecedented access to confined environments and show potential for applications such as search‐and‐rescue and high‐value asset inspection. The capability of body deformation further enhances the reachability of these small robots in cluttered terrains similar to those of insects and soft arthropods. Motivated by this concept, compliant legged articulated robotic insect (CLARI), an insect‐scale 2.59 g quadrupedal robot capable of body deformation, is presented. The robot, currently, with tethered electrical connections for power and control is manufactured using laminate fabrication and assembled using origami pop‐up techniques. To enable locomotion in multiple shape configurations, a novel body architecture comprising modular, actuated leg mechanisms, is designed. CLARI has eight independently actuated degrees of freedom driven by custom piezoelectric actuators, making it mechanically dextrous. Herein, open‐loop robot locomotion at multiple stride frequencies (1–10 Hz) is characterized using multiple gaits (trot, walk, etc.) in three different fixed body shapes (long, symmetric, wide) and the robot's capabilities are illustrated. Finally, preliminary results of CLARI locomoting with a compliant body in open terrain and through a laterally constrained gap, a novel capability for legged robots, is demonstrated. These results represent the first step toward achieving effective cluttered terrain navigation with adaptable compliant robots in real‐world environments.

Funder

Army Research Office

Meta

Publisher

Wiley

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3