Intelligent Shape Decoding of a Soft Optical Waveguide Sensor

Author:

Mak Chi-Hin1,Li Yingqi1ORCID,Wang Kui1,Wu Mengjie1,Ho Justin Di-Lang1,Dou Qi2,Sze Kam-Yim1,Althoefer Kaspar3,Kwok Ka-Wai1ORCID

Affiliation:

1. Department of Mechanical Engineering The University of Hong Kong Hong Kong 999077 P. R. China

2. Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong 999077 P. R. China

3. School of Electronic Engineering and Computer Science Queen Mary University of London London E1 4NS UK

Abstract

Optical waveguides create interesting opportunities in the area of soft sensing and electronic skins due to their potential for high flexibility, quick response time, and compactness. The loss or change of light intensities inside a waveguide can be measured and converted into useful sensing feedback such as strain or shape sensing. Compared to other approaches such as those based on microelectromechanical system modules or flexible conductors, the entire sensor state can be characterized by fewer sensing nodes and less encumbering wiring, allowing greater scalability. Herein, simple light‐emitting diodes (LEDs) and photodetectors (PDs) combined with an intelligent shape decoding framework are utilized to enable 3D shape sensing of a self‐contained flexible substrate. Multiphysics finite element analysis is leveraged to optimize the PDs/LEDs layout and enrich ground‐truth data from sparse to dense points for model training. The mapping from light intensities to overall sensor shape is achieved with an autoregression‐based model that considers temporal continuity and spatial locality. The sensing framework is evaluated on an A5‐sized flexible sensor prototype and a fish‐shaped prototype, where sensing accuracy (RMSE = 0.27 mm) and repeatability (Δ light intensity <0.31% over 1000 cycles) are tested underwater.

Funder

Innovation and Technology Commission

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3