Accurate Prediction and Reliable Parameter Optimization of Neural Network for Semiconductor Process Monitoring and Technology Development

Author:

Yun Hyeok1ORCID,An Chang-Hyeon2,Jang Hyundong1ORCID,Cho Kyeongrae1ORCID,Lee Jeong-Sik2ORCID,Eom Seungjoon1,Kim Choong-Ki3,Yoo Min-Soo3,Choi Hyun-Chul2,Baek Rock-Hyun1ORCID

Affiliation:

1. Department of Electrical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea

2. Department of Electronic Engineering Yeungnam University Gyeongsan 38541 Republic of Korea

3. Department of DRAM Development SK hynix Inc. Icheon 17336 Republic of Korea

Abstract

Herein, novel neural network (NN) methods that improve prediction accuracy and reduce output variance of the optimized input in the gradient method for cross‐sectional data are proposed, and the variability evaluation approach of optimized inputs in the semiconductor process is suggested. Specifically, electrical parameter measurements (EPMs) and power‐delay product of industrial high‐k metal gate DRAM peripheral 29‐stage ring oscillator circuits, including NMOS, PMOS, and interconnects, are focused on. The proposed methods find an optimized input to achieve a lower NN output variance in the gradient descent than one multilayer perceptron (MLP) and mean ensemble of MLPs even when considering the variabilities of the devices and interconnects. The local optima problem of one MLP is resolved by utilizing multiple MLPs trained with different train/validation data, their trimmed mean, and an additional learnable layer. Moreover, adding the learnable layer secures versatility for various parametric datasets. The methods improve the prediction accuracy (R2) by 5.6–15.6% in sparse data space compared to one MLP and the mean ensemble, decrease the NN output variance of the optimized input by 73.0–81.6% compared to one MLP and the mean ensemble, and are successfully verified by implementing it on EPMs of 3977 test patterns of 314 wafers and 16 lots.

Funder

Ministry of Science, ICT and Future Planning

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3