Machine Learning Aided Optimization of P1 Laser Scribing Process on Indium Tin Oxide Substrates

Author:

Karade Vijay C.12ORCID,Kim Saewoong23,Jeong Inyoung2,Ko Min Jae3,Park Joo Hyung24,Cho Jun‐Sik2,Hwang Inchan2,Gwak Jihye2,Sutar Santosh S.5,Dongale Tukaram D.6,Yun Jae Ho1,Kim Kihwan24,Eo Young‐Joo24ORCID

Affiliation:

1. Department of Energy Engineering Korea Institute of Energy Technology (KENTECH) Naju 522132 Republic of Korea

2. Photovoltaics Research Department Korea Institute of Energy Research Daejeon 34129 Republic of Korea

3. Department of Chemical Engineering Hanyang University Seoul 04763 Republic of Korea

4. Department of Renewable Energy Engineering University of Science and Technology (UST) 217‐Gajeong‐ro Yuseong‐gu Daejeon 34113 Republic of Korea

5. Yashwantrao Chavan School of Rural Development Shivaji University Kolhapur 416004 India

6. Computational Electronics and Nanoscience Research Laboratory School of Nanoscience and Biotechnology Shivaji University Kolhapur 416004 India

Abstract

Present study employes a picosecond laser (532 nm) for selective P1 laser scribing on the indium tin oxide (ITO) layer and subsequent fine‐tuning of P1 scribing conditions with machine learning (ML) techniques. Initially, the scribing is performed by varying different laser parameters and further evaluate them via an optical microscope and two probe resistivity measurements. The corresponding scribing width and sheet resistance data are used as input databases for ML analysis. The classification and regression tree (CART)‐based ML analysis revealed that median pulse energy <5.7 μJ insufficient to separate the adjacent scribing regions. While pulse energy >5.7 μJ, APL > 35%, LSO > 46%, and processing speed ≥1250 mm s−1 gives ≥16 μm of scribing width. Further, the decision tree (DT) analysis showed that pulse energy of ≥8.1 μJ, and LSO ≥ 37% are required for electrically isolated lines. The feature importance score suggests that laser fluence and pulse energy determined the scribing width, whereas electrical isolation strongly depends on LSO and processing speed. Finally, the ML achieved conditions experimentally validated and reassessed via scanning electron microscope, and atomic force microscopy aligns well with optical microscope measurements.

Funder

Korea Institute of Energy Research

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3