Hydrogel Microrobots Self‐Assembled into Ordered Structures with Programmable Actuation

Author:

Kropacek Jindrich1,Maslen Charlie1,van Dijk Bertjan1,Iniguez-Rabago Agustin2,Overvelde Johannes T.B.2,Zubov Alexandr1,Vrba Jan1,Cigler Petr3,Stepanek Frantisek1,Rehor Ivan13ORCID

Affiliation:

1. Faculty of Chemical, Engineering University of Chemistry and Technology Prague Technicka 5 166 28 Prague 6 Prague Czech Republic

2. Soft Robotic Matter Group AMOLF Science Park 104 1098 XG Amsterdam Netherlands

3. Synthetic Nanochemistry Research Group Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 160 00 Prague Czech Republic

Abstract

Sub‐millimeter robots—microrobots—that can autonomously perform mechanical work at the microscale would radically change new areas of human activity such as micromanipulation, microfabrication, or healthcare. Sets of identical microrobots that can connect into different, larger structures open the possibility for a “universal” microrobotic unit that fulfills a large variety of functions derived from the structure that multiple units can be assembled into. The capability of individual hydrogel microcrawlers to self‐assemble under confinement into periodically ordered planar structures is demonstrated. Subsequently, these can be bound together using light to form a solid porous sheet. The lateral shape of the sheet is imprinted during the binding process. Furthermore, the sheets bend into 3D structures, where the bending direction can be programmed. The resulting structures actuate anisotropically when exposed to heat or laser illumination and can be designed for various modes of operation, such as manipulation or untethered locomotion. The formation of ordered microstructures from individual mobile robots enables easier transport and remote assembly of these structures at the place of interest without the need for direct intervention.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3