HyperSense: Hyperdimensional Intelligent Sensing for Energy‐Efficient Sparse Data Processing

Author:

Yun Sanggeon1ORCID,Chen Hanning1,Masukawa Ryozo1,Errahmouni Barkam Hamza1,Ding Andrew1,Huang Wenjun1,Rezvani Arghavan1,Angizi Shaahin2,Imani Mohsen1ORCID

Affiliation:

1. Department of Computer Science University of California Irvine Irvine CA 92697 USA

2. Department of Electrical and Computer Engineering New Jersey Institute of Technology Newark NJ 07102 USA

Abstract

Introducing HyperSense, the co‐designed hardware and software system efficiently controls analog‐to‐digital converter (ADC) modules’ data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy‐efficient low‐precision ADC, diminishing machine learning system costs. Leveraging neurally inspired hyperdimensional computing, HyperSense analyzes real‐time raw low‐precision sensor data, offering advantages in handling noise, memory‐centricity, and real‐time learning. The proposed HyperSense model combines high‐performance software for object detection with real‐time hardware prediction, introducing the novel concept of intelligent sensor control. Comprehensive software and hardware evaluations demonstrate the solution's superior performance, evidenced by the highest area under the curve and sharpest receiver operating characteristic curve among lightweight models. Hardware‐wise, the field programmable gate array‐based domain‐specific accelerator tailored for HyperSense achieves a 5.6× speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real‐time data processing across diverse applications.

Funder

Defense Sciences Office, DARPA

National Science Foundation

Semiconductor Research Corporation

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Wiley

Reference38 articles.

1. R. C.Moioli P. H.Nardelli M. T.Barros W.Saad A.Hekmatmanesh P.Gória A. S.de Sena M.Dzaferagic H.Siljak W.Van Leekwijck D.Carrillo S.Latré(Preprint) arXiv:2004.01834 v1 submitted: Apr.2020.

2. Brain-inspired computing needs a master plan

3. X.Hou J.Liu X.Tang C.Li J.Chen L.Liang K.‐T.Cheng M.Guo inProc. of the 50th Annual Int. Symp. on Computer Architecture 2023 pp.1–13.

4. T.Ma Y.Feng X.Zhang Y.Zhu inProc. of the 50th Annual Int. Symp. on Computer Architecture June2023 pp.1–14 https://doi.org/10.1145/3579371.3589066.

5. T.Ma A. J.Boloor X.Yang W.Cao P.Williams N.Sun A.Chakrabarti X.Zhang inProc. of the 50th Annual Int. Symp. on Computer Architecture June2023 pp.1–14 https://doi.org/10.1145/3579371.3589089.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3