Design of 3D Magnetic Tactile Sensors with High Sensing Accuracy Guided by the Theoretical Model

Author:

Hu Xiaocheng1,Zhu Heng1,Chen Ruiwen2,Hu Sideng2,Jia Zheng1,Yu Honghui3,Qu Shaoxing1ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic System Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Eye Center of the Second Affiliated Hospital, Center for X-Mechanics Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China

2. College of Electrical Engineering Zhejiang University Hangzhou 310027 China

3. Department of Mechanical Engineering The City College of New York New York NY 10031 USA

Abstract

The past decade has witnessed a surging interest in the study of magnetic tactile sensors that can detect subtle changes in both normal and shear forces. However, due to the lack of guidance by appropriate theoretical models, the development of previous magnetic tactile sensors relies either on a trial‐and‐error manner or tedious point‐by‐point experimental calibrations, which are costly and time‐inefficient. Here, a theoretical model integrating magnetics, artificial neural networks, and nonlinear solid mechanics is proposed for the first time to guide the design of 3D magnetic tactile sensors. Then, a button‐shaped magnetic tactile sensor prototype that can detect subtle triaxial force changes is fabricated, which relates the nonlinear magnetic flux density to the external force, without burdensome calibration procedures. The sensor can achieve an axial measurement error of less than 1% and an in‐plane error of less than 3.7% with excellent durability. This study provides a comprehensive understanding of magnetic tactile sensors and sheds light on their applications in soft robotics, intelligent manipulation, and human–robot interaction (HRI).

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3