Integration of Neuromorphic and Reconfigurable Logic‐in‐Memory Operations in an Electrolyte‐Manipulated Ferroelectric Organic Neuristor

Author:

Li Longfei1,Wang Qijing1ORCID,Pei Mengjiao1,Wang Hengyuan1,Guo Jianhang1,Hao Ziqian1,Li Yating1,Dai Qinyong1,Lu Kuakua1,Li Yun1

Affiliation:

1. National Laboratory of Solid-State Microstructures School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China

Abstract

The rapid development of digital technology results in a tremendous increase in computational tasks that impose stringent performance requirements on next‐generation computing. Biological neurons with fault tolerance and logic functions exhibit powerful computing capacity when facing complex real‐world problems, which strikes the inspiration for the development of highly energy‐efficient brain‐like computing. Herein, a novel device architecture, an electrolyte‐manipulated ferroelectric organic neuristor, which emulates biological neurons to perform both neuromorphic and reconfigurable logic‐in‐memory operations in a single cell, is proposed. The interfacial coupling of ions and dipoles in the neuristor contributes to the tunable synaptic behaviors of short‐ to long‐term plasticity. Notably, by virtue of lateral capacitive coupling, the neuristor is effectively controlled by multiple in‐plane gates to achieve heterosynaptic plasticity. An artificial neural network exhibits robust recognition ability with high accuracy of 93.7% in speech recognition, further demonstrating the feasibility of the neuristor for neuromorphic computing. Additionally, reconfigurable logic‐in‐memory operations (OR and AND) are successfully demonstrated in a single device. Therefore, the devices shed new light on the development of more brain‐inspired computing systems in the era of big data.

Funder

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3