Spin‐Transfer‐Torque Magnetic Tunnel Junction Nonlinear In‐Sensor Computing Synapse for Improving the Performance of the Feedforward Neural Network

Author:

Ji Minhui1,Wang Jiayuan1,Yang Liyuan1,Zhang Xinmiao1,Hu Yueguo1,Du Qingfa1,Hu Jiafei1,Qiu Weicheng1,Peng Junping1,Chen Xiaowen2,Luo Yanxiang3,Fang Bin3,Li Peisen1ORCID,Pan Mengchun1ORCID

Affiliation:

1. College of Intelligence Science and Technology National University of Defense Technology Changsha Hunan 410073 China

2. College of Computer National University of Defense Technology Changsha Hunan 410073 China

3. Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China

Abstract

In‐sensor computing architecture has a great advantage especially in massive data sampling, transfer, and processing compared with the separated intelligent sensor systems. However, most of the in‐sensor computing device is proposed based on the traditional neural network model, where the synapse performs linear multiplication of input and weight. This approach fails to make the most use of the nonlinearity of in‐sensor computing devices. Therefore, in this article, first a modified feedforward neural network model with the nonlinear in‐sensor computing synapse (NSCS) located at the input layer is presented, and the backpropagation (BP) algorithm is modified to train the network. Then, the nonlinear characteristics of the NSCS composed of the spin‐transfer‐torque magnetic tunnel junction (STT–MTJ) devices and simple complementary metal‐oxide‐semiconductor (CMOS) circuit are analyzed. Based on the nonlinear response of STT–MTJ NSCS, the small‐scale network with NSCS synapse is experimented on the Modified National Institute of Standards and Technology dataset and compared with the traditional network of the same network size. In the simulation result, it is shown that better performance can be achieved with the STT–MTJ NSCS, including a 2–15 times improvement in convergence speed and a 2.5%–5.1% increase in accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3