PowerGAN: A Machine Learning Approach for Power Side‐Channel Attack on Compute‐in‐Memory Accelerators

Author:

Wang Ziyu1,Wu Yuting1,Park Yongmo1,Yoo Sangmin1,Wang Xinxin1,Eshraghian Jason K.12,Lu Wei D.1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 USA

2. Department of Electrical and Computer Engineering University of California Santa Cruz CA 95064 USA

Abstract

Analog compute‐in‐memory (CIM) systems are promising candidates for deep neural network (DNN) inference acceleration. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. Herein, a potential security vulnerability is identified wherein an adversary can reconstruct the user's private input data from a power side‐channel attack even without knowledge of the stored DNN model. An attack approach using a generative adversarial network is developed to achieve high‐quality data reconstruction from power leakage measurements. The analyses show that the attack methodology is effective in reconstructing user input data from power leakage of the analog CIM accelerator, even at large noise levels and after countermeasures. To demonstrate the efficacy of the proposed approach, an example of CIM inference of U‐Net for brain tumor detection is attacked, and the original magnetic resonance imaging medical images can be successfully reconstructed even at a noise level of 20% standard deviation of the maximum power signal value. This study highlights a potential security vulnerability in emerging analog CIM accelerators and raises awareness of needed safety features to protect user privacy in such systems.

Funder

Semiconductor Research Corporation

National Science Foundation

Publisher

Wiley

Subject

General Medicine

Reference59 articles.

1. a)OpenAI (Preprint) arXiv:2303.08774 v3 submitted: May2023;

2. b)K.He X.Zhang S.Ren J.Sun(Preprint) arXiv:1512.03385 v1 submitted: Dec2015;

3. c)E.Variani X.Lei E.McDermott I. L.Moreno J.Gonzalez-Dominguez presented at2014 IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP) Florence Italy May2014;

4. d)A. M.Ozbayoglu M. U.Gudelek O. B.Sezer (Preprint) arXiv:2002.05786 v1 submitted: Feb2020.

5. Challenges and Trends of Nonvolatile In-Memory-Computation Circuits for AI Edge Devices

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3