Dynamic Tuning of Plasmonic Hot‐Spot Generation through Cilia‐Inspired Magnetic Actuators

Author:

Liman Gorkem1,Ergene Emre12,Yildiz Emrecan1,Hukum Kubra Ozkan1,Yilgor Huri Pinar2,Cetin Arif E.3,Usta Hakan4,Demirel Gokhan1ORCID

Affiliation:

1. Bio-inspired Materials Research Laboratory (BIMREL) Department of Chemistry Gazi University 06500 Ankara Turkey

2. Department of Biomedical Engineering Faculty of Engineering Ankara University 06135 Ankara Turkey

3. Izmir Biomedicine and Genome Center 35340 Izmir Turkey

4. Department of Nanotechnology Engineering Abdullah Gül University 38080 Kayseri Turkey

Abstract

Soft actuators that draw inspiration from nature are powerful and versatile tools for both technological applications and fundamental research, yet their use in hot‐spot engineering is very limited. Conventional hot‐spot engineering methods still suffer from complexity, high process cost, and static generation of hot‐spots, thus, underperforming particularly in the application side. Herein, we demonstrate a strategy based on plasmonic nanoparticles decorated cilia‐inspired magnetic actuators that enable highly accessible millimeter‐sized hot‐spot generation via bending motion under a magnetic field. The hot‐spot formation is shown to be reversible and tunable, and leads to excellent Raman signal enhancements of up to ≈120 folds compared to the unactuated platforms. Accessible electromagnetic field magnification in the platforms can be manipulated by controlling magnetic field strength, which is further supported by finite difference time domain (FDTD) simulations. As a proof‐of‐concept demonstration, a centipede‐inspired robot is fabricated and used for sample collection/analysis in a target environment. Our results demonstrate an effective strategy in soft actuator platforms for reversible and tunable large‐area hot‐spot formation, which provides a promising guidance toward studying the fundamentals of hot‐spot generation and advancing real‐life plasmonic applications.

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3