Biorobotic Waterfowl Flipper with Skeletal Skins in a Computational Framework: Kinematic Conformation and Hydrodynamic Analysis

Author:

Huang Jinguo1ORCID,Wang Tianmiao2,Liang Jianhong2,Yang Xingbang3,Wang Haodong1,Kang Guixia1

Affiliation:

1. School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing 100876 China

2. School of Mechanical Engineering and Automation Beihang University Beijing 100083 China

3. School of Biological Science and Medical Engineering Beihang University Beijing 100083 China

Abstract

Cormorants (Phalacrocoraxe), types of aquatic birds, utilize the compliance/flexibility of the flippers and exploit hydrodynamic/biomechanic processes to accomplish diverse operations. Particularly, the flipper‐propelled locomotion exhibits traits such as super‐redundancy and large deformations, necessitating depiction of both movements of the rigid skeletons as well as local deformations of the soft tissues. However, there are few well‐established kinematic/hydrodynamic framework models and constitutive equations for such rigid–flexible intrinsically coupled biosystems. Herein, combined with a skeletal skinning algorithm to handle the deformation of a flexible body attached to a rigid body, a numerical computation framework for an in‐depth fluid–structure interaction is presented, which enables the capture of viscoelastic and anisotropic characteristics of a highly compliant 3D rigid–flexible coupled model in a low‐Reynolds‐number flow. Considering the biorobotic cormorant flipper with a nonuniformly distributed stiffness as a representative, the challenging issue of controlling a biomechanically compliant flipper to synthesize realistic locomotion sequences, including rigid skeleton movements and soft tissue deformations, is addressed. Furthermore, a numerical computational hydrodynamic analysis is performed to demonstrate that the cormorant flipper can generate 5 N fluid force and 0.45 N m fluid moment during the turning operation in 0.8 s, which is consistent with the former experimental results.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3