A Microrobotic Design for the Spontaneous Tracing of Isochemical Contours in the Environment

Author:

Brooks A. Merritt1,Yang Sungyun1,Kang Byung Ha1,Strano Michael S.1ORCID

Affiliation:

1. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

Microrobotic platforms hold significant potential to advance a variety of fields, from medicine to environmental sensing. Herein, minimally functional robotic entities modeled on readily achievable state‐of‐the‐art features in a modern lab or cleanroom are computationally simulated. Inspired by Dou and Bishop (Phys Rev Res. 2019;1(3):1–5), it is shown that the simple combination of unidirectional steering connected to a single environmental (chemical) sensor along with constant propulsion gives rise to highly complex functions of significant utility. Such systems can trace the contours orthogonal to arbitrary chemical gradients in the environment. Also, pairs of such robots that are additionally capable of emitting the same chemical signal are shown to exhibit coupled relative motion. When the pair has unidirectional steering in opposite directions within the 2D plane (i.e., counter‐rotating), they move in parallel trajectories to each other. Alternatively, when steering is in the same direction (corotation), the two move in the same epicyclical trajectory. In this way, the chirality of the unidirectional steering produces two distinct emergent phenomena. The behavior is understood as a ratchet mechanism that exploits the differential in the radii of curvature corresponding to different spatial locations. Applications to environmental detection, remediation, and monitoring are discussed.

Funder

Army Research Office

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3