MA‐CAT: Misclassification‐Aware Contrastive Adversarial Training

Author:

Zhi Hongxin12ORCID,Yu Hongtao2,Li Shaomei12,Huang Ruiyang12

Affiliation:

1. Institute of Information Technology PLA Strategic Support Force Information Engineering University Zhengzhou 450000 China

2. National Digital Switching System Engineering Technology Research Center Zhengzhou 450000 China

Abstract

Vulnerability to adversarial examples poses a significant challenge to the secure application of deep neural networks. Adversarial training and its variants have shown great potential in addressing this problem. However, such approaches, which directly optimize the decision boundary, often result in overly complex adversarial decision boundaries that are detrimental to generalization. To deal with this issue, a novel plug‐and‐play method known as Misclassification‐Aware Contrastive Adversarial Training (MA‐CAT) from the perspective of data distribution optimization is proposed. MA‐CAT leverages supervised decoupled contrastive learning to cluster nature examples within the same class in the logit space, indirectly increasing the margins of examples. Moreover, by taking into account the varying difficulty levels of adversarial training for different examples, MA‐CAT adaptively customizes the strength of adversarial training for each example using an instance‐wise misclassification‐aware adaptive temperature coefficient. Extensive experiments on the CIFAR‐10, CIFAR‐100, and SVHN datasets demonstrate that MA‐CAT can be easily integrated into existing models and significantly improves robustness with minimal computational cost.

Publisher

Wiley

Reference40 articles.

1. C.Szegedy W.Zaremba I.Sutskever J.Bruna D.Erhan I.Goodfellow R.Fergus CoRR abs/1312.61992013.

2. B.Biggio I.Corona D.Maiorca B.Nelson N.Šrndić P.Laskov G.Giacinto F.Roli inMachine Learning and Knowledge Discovery in Databases: European Conf. ECML PKDD 2013 Proc. Part III 13 Springer Prague Czech Republic September2013 pp.387–402.

3. S.Bubeck Y. T.Lee E.Price I.Razenshteyn inInt. Conf. Machine Learning PMLR California USA2019 pp.831–840.

4. G.Apruzzese M.Colajanni L.Ferretti M.Marchetti in2019 11th Int. Conf. Cyber Conflict (CyCon) Vol.900 IEEE Piscataway NJ2019 pp.1–18.

5. The security of machine learning in an adversarial setting: A survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3