Affiliation:
1. Institute of Forensic Science Ministry of Public Security Beijing China
Abstract
This article introduces the synergistic dual‐stream network (SDS‐Net), a novel neural network architecture that significantly enhances the detection of image manipulations. SDS‐Net employs a unique dual‐stream fusion strategy that processes both RGB image and the corresponding noise map. It innovatively combines features computation from the different blocks of dual backbones, and leverages a multi‐scale spatial pyramid pooling (MSPP) module to expand the receptive fields of shallow features. This approach not only enriches the feature representation, but also ensures the precise localization of manipulated regions. Extensive experiments conducted on various public datasets demonstrate the superiority of SDS‐Net over several state‐of‐the‐art methods.
Reference50 articles.
1. Large-scale evaluation of splicing localization algorithms for web images
2. J. H.Bappy A. K.Roy‐Chowdhury J.Bunk L.Nataraj B. S.Manjunath inProc. IEEE Int. Conf. Computer Vision IEEE Computer Society Venice Italy2017 pp.4980–4989.
3. Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries
4. G.Mahfoudi B.Tajini F.Retraint F.Morain‐Nicolier J.Dugelay M.Pic inProc. 27th European Signal Processing Conf. IEEE Spain2019 pp.1–5.
5. Media Forensics and DeepFakes: An Overview