Configuration Design and Analysis of Reconfigurable Supernumerary Robotic Legs for Multitask Adaptation: SuperLegs

Author:

Zhang Qinghua1,Li Hongwu1,Tang Yuan2,Li Yuancheng1,Bai Minghao1,Li Xianglong1,Ju Haotian1,Zheng Tianjiao1,Lai Mingzhu3,Zhao Jie1,Zhu Yanhe1ORCID

Affiliation:

1. The School of Mechatronics Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China

2. The Department of Mechanical, Aerospace and Civil Engineering University of Manchester Manchester M13 9PL UK

3. School of Mathematics and Statistics Hainan Normal University Haikou 571158 China

Abstract

Supernumerary robotic limbs (SRLs) are a new type of wearable robot that add artificial limbs to the human body to perform collaborative tasks. In contrast with exoskeletons, SRLs are kinematically independent of human limbs, allowing the wearer to overcome the limitations of human physiological ability, such as realizing the expansion of space in the human body, rather than enhancing existing limbs. In this study, a lightweight and compact hexagonal reconfigurable lower‐limb SRL system is proposed to assist human locomotion in daily activities, including walking, crouching, and stair climbing. To adapt to multiple scenarios, the hexagonal mechanism can be adjusted to different configurations including convex hexagonal configuration, pentagonal configuration, and concave hexagonal configuration. To achieve more optimized performance of different configurations, the optimization for identifying the optimal dimensions of each link was carried out. Subsequently, the detailed design methodology and specifics are presented. Finally, the load and wearing performance experiments were evaluated. The experiment results demonstrated that the tested maximum load in different configurations exceeded 90% of the simulated value and the entire equipment has a good wearing adaptability. This study may inspire the design of other lower‐limb SRLs and provide efficient solutions for stable support assistance in various scenarios.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3