Ultrafast‐and‐Ultralight ConvNet‐Based Intelligent Monitoring System for Diagnosing Early‐Stage Mpox Anytime and Anywhere

Author:

Yue Yubiao1ORCID,Shi Xiaoqiang2,Qin Li2,Zhang Xinyue1,Xu Jialong1,Zheng Zipei3,Li Zhenzhang3ORCID,Li Yang1ORCID

Affiliation:

1. School of Biomedical Engineering Guangzhou Medical University Guangzhou 511436 China

2. Shenyang Institute of Computing Technology Chinese Academy of Sciences Shenyang 110168 China

3. School of Mathematics and Systems Science Guangdong Polytechnic Normal University Guangzhou 510665 China

Abstract

Due to the absence of more efficient diagnostic tools, the spread of mpox continues to be unchecked. Although related studies have demonstrated the high efficiency of deep learning models in diagnosing mpox, key aspects such as model inference speed and parameter size have always been overlooked. Herein, an ultrafast and ultralight network named Fast‐MpoxNet is proposed. Fast‐MpoxNet, with only 0.27 m parameters, can process input images at 68 frames per second (FPS) on the CPU. To detect subtle image differences and optimize model parameters better, Fast‐MpoxNet incorporates an attention‐based feature fusion module and a multiple auxiliary losses enhancement strategy. Experimental results indicate that Fast‐MpoxNet, utilizing transfer learning and data augmentation, produces 98.40% classification accuracy for four classes on the mpox dataset. Furthermore, its Recall for early‐stage mpox is 93.65%. Most importantly, an application system named Mpox‐AISM V2 is developed, suitable for both personal computers and smartphones. Mpox‐AISM V2 can rapidly and accurately diagnose mpox and can be easily deployed in various scenarios to offer the public real‐time mpox diagnosis services. This work has the potential to mitigate future mpox outbreaks and pave the way for developing real‐time diagnostic tools in the healthcare field.

Funder

National Natural Science Foundation of China

International Science and Technology Cooperation Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3