A High‐Resolution Prediction Network for Predicting Intratumoral Distribution of Nanoprobes by Tumor Vascular and Nuclear Feature

Author:

Xu Jiaqi1,Luo Yafei1,Wang Chuanbing1,Chen Haiyan1,Tang Yuxia1,Xu Ziqing1,Li Yang1,Ni Hao2,Shi Xianbiao3,Hu Yongzhi1,Wu Feiyun1,Zhang Jiulou1,Wang Shouju1ORCID

Affiliation:

1. Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu 210000 China

2. Department of Mathematics University College London London WC1H 0AY UK

3. Department of General Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210000 China

Abstract

In this study, the critical need for precise and accurate prediction of intra‐tumor heterogeneity related to the enhanced permeability and retention effect and spatial distribution of nanoprobes is addressed for the development of effective nanodrug delivery strategies. Current predictive models are limited in terms of resolution and accuracy, prompting the construction of a high‐resolution prediction network (HRPN) that estimates the microdistribution of quantum dots, factoring in tumor vascular and nuclear features. The HRPN algorithm is trained using 27 780 patches and validated on 4920 patches derived from 4T1 breast cancer whole‐slide images, demonstrating its reliability. The HRPN model exhibits minimal error (mean square error = 1.434, root mean square error = 1.198), satisfactory goodness of fit (R2 = 0.891), and superior image quality (peak signal‐to‐noise ratio = 44.548) when compared to a generative‐adversarial‐network‐structured model. Furthermore, the HRPN model offers improved prediction accuracy, broader prediction intervals, and reduced computational resource requirements. Consequently, the proposed model yields high‐resolution predictions that more closely resemble actual tumor microdistributions, potentially serving as a powerful analytical tool for investigating the spatial relationship between the tumor microenvironment and nanoprobes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Double First Class University Plan

Science and Technology Support Program of Jiangsu Province

Science and Engineering Research Council

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3