Is There a Difference between Paper and Electronic Chinese Signatures?

Author:

Luo Ji-Feng12,Pu Yun-Zhu3,Yin Jie-Yang3,Liu Xiaohong4,Tan Tao5,Zhang Yudong6ORCID,Hu Menghan17

Affiliation:

1. Shanghai Key Laboratory of Multidimensional Information Processing School of Communication and Electronic Engineering East China Normal University Shanghai 200241 China

2. School of Mathematical Sciences East China Normal University Shanghai 200241 China

3. School of Software Engineering East China Normal University Shanghai 200062 China

4. John Hopcroft Center for Computer Science Shanghai Jiao Tong University Shanghai 200240 China

5. Faculty of Applied Sciences Macao Polytechnic University Macao 999078 China

6. School of Computing and Mathematical Sciences University of Leicester Leicester LE1 7RH UK

7. Key Laboratory of Artificial Intelligence Ministry of Education Shanghai 200240 China

Abstract

The purpose of this study is to investigate whether there are differences in handwritten Chinese signatures on different media including paper and electronic devices. Participants were asked to sign specified names on various types of media and the signatures were scanned or saved digitally for subsequent analysis. In this study, using convolutional neural networks and Siamese neural networks as classifiers and comparators, the performance plunge is revealed and thus considerable dissimilarity between the signatures on different media is implied. To further explore this, cubic Bézier curves are fitted to the signatures using the least square method for quantitative statistical analysis. By analyzing the visual changes in the morphology of strokes, several features of signatures are selected and computed, and the paired t‐test and the Wilcoxon signed‐rank test are implemented, which provides a deeper substantiation and explanation of the findings.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3