A Neuromorphic Vision and Feedback Sensor Fusion Based on Spiking Neural Networks for Real‐Time Robot Adaption

Author:

López‐Osorio Pablo1ORCID,Domínguez‐Morales Juan Pedro2ORCID,Perez‐Peña Fernando1ORCID

Affiliation:

1. School of Engineering Universidad de Cádiz 11519 Puerto Real Spain

2. Robotics and Technology of Computers Lab. ETSII‐EPS Universidad de Sevilla Sevilla 41012 Spain

Abstract

For some years now, the locomotion mechanisms used by vertebrate animals have been a major inspiration for the improvement of robotic systems. These mechanisms range from adapting their movements to move through the environment to the ability to chase prey, all thanks to senses such as sight, hearing, and touch. Neuromorphic engineering is inspired by brain problem‐solving techniques with the goal of implementing models that take advantage of the characteristics of biological neural systems. While this is a well‐defined and explored area in this field, there is no previous work that fuses analog and neuromorphic sensors to control and modify robotic behavior in real time. Herein, a system is presented based on spiking neural networks implemented on the SpiNNaker hardware platform that receives information from both analog (force‐sensing resistor) and digital (neuromorphic retina) sensors and is able to adapt the speed and orientation of a hexapod robot depending on the stability of the terrain where it is located and the position of the target. These sensors are used to modify the behavior of different spiking central pattern generators, which in turn will adapt the speed and orientation of the robotic platform, all in real time. In particular, experiments show that the network is capable of correctly adapting to the stimuli received from the sensors, modifying the speed and heading of the robotic platform.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3