Affiliation:
1. College of Science Henan Agricultural University Zhengzhou 450002 China
2. Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450001 China
Abstract
With the rapid development of artificial intelligence, human‐machine interfaces (HMI) are continuing to affect human lifestyles. Artificial skin is a new type of HMI sensor that enables a seamless connection between human and electronic devices. Currently, artificial skin is mostly prepared from rigid materials, which lack flexibility and scalability, thus impeding the development of HMI. Hydrogel, consisting of 3D polymer network and water is similar to human tissues and is therefore an excellent candidate for artificial skin in HMI. The conventional HMI of hydrogel‐based artificial skin includes touch pad and machine control based on capacitive or resistive sensors. However, the energy supply of HMI depends on battery which requires frequent recharging and replacement. Therefore, hydrogel‐based self‐powered artificial skin is expected to become primary interaction medium for the forthcoming generation of HMI. This article reviews the development of hydrogel‐based self‐powered artificial skin for HMI. Various power supply mechanisms of hydrogel‐based artificial skin are discussed. The materials for self‐powered artificial skin are introduced, including ionic hydrogel, ionic‐liquid hydrogel, metal‐based hydrogel, carbon‐based and MXene‐based hydrogel, and conductive polymer‐based hydrogel. The application of the hydrogel‐based self‐powered artificial skin in HMI is also reviewed. Finally, the challenges and development trends in HMI are outlined.
Funder
China Postdoctoral Science Foundation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献