SSRNet: A Deep Learning Network via Spatial‐Based Super‐resolution Reconstruction for Cell Counting and Segmentation

Author:

Deng Lijia1,Zhou Qinghua1,Wang Shuihua1,Zhang Yudong1ORCID

Affiliation:

1. School of Computing and Mathematical Sciences University of Leicester Leicester LE1 7RH UK

Abstract

Cell counting and segmentation are critical tasks in biology and medicine. The traditional methods for cell counting are labor‐intensive, time‐consuming, and prone to human errors. Recently, deep learning‐based cell counting methods have become a trend, including point‐based counting methods, such as cell detection and cell density prediction, and non‐point‐based counting, such as cell number regression prediction. However, the point‐based counting method heavily relies on well‐annotated datasets, which are scarce and difficult to obtain. On the other hand, nonpoint‐based counting is less interpretable. The task of cell counting by dividing it into two subtasks is approached: cell number prediction and cell distribution prediction. To accomplish this, a deep learning network for spatial‐based super‐resolution reconstruction (SSRNet) is proposed that predicts the cell count and segments the cell distribution contour. To effectively train the model, an optimized multitask loss function (OM loss) is proposed that coordinates the training of multiple tasks. In SSRNet, a spatial‐based super‐resolution fast upsampling module (SSR‐upsampling) is proposed for feature map enhancement and one‐step upsampling, which can enlarge the deep feature map by 32 times without blurring and achieves fine‐grained detail and fast processing. SSRNet uses an optimized encoder network. Compared with the classic U‐Net, SSRNet's running memory read and write consumption is only 1/10 of that of U‐Net, and the total number of multiply and add calculations is 1/20 of that of U‐Net. Compared with the traditional sampling method, SSR‐upsampling can complete the upsampling of the entire decoder stage at one time, reducing the complexity of the network and achieving better performance. Experiments demonstrate that the method achieves state‐of‐the‐art performance in cell counting and segmentation tasks. The method achieves nonpoint‐based counting, eliminating the need for exact position annotation of each cell in the image during training. As a result, it has demonstrated excellent performance on cell counting and segmentation tasks. The code is public on GitHub (https://github.com/Roin626/SSRnet).

Funder

Biotechnology and Biological Sciences Research Council

Royal Society

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3