Clustering Methods for the Characterization of Synchrotron Radiation X‐Ray Fluorescence Images of Human Carotid Atherosclerotic Plaque

Author:

De La Rosa Nathaly12ORCID,Peruzzi Niccolò1ORCID,Dreier Till13ORCID,Truong My45ORCID,Johansson Ulf6ORCID,Kalbfleisch Sebastian6ORCID,Gonçalves Isabel78ORCID,Bech Martin1ORCID

Affiliation:

1. Department of Medical Radiation Physics Lund University Lund 22185 Sweden

2. European Spallation Source ERIC Partikelgatan 2 Lund 224 84 Sweden

3. Excillum AB Jan Stenbecks Torg 17 Kista 16440 Sweden

4. Diagnostic Radiology, Department of Clinical Sciences Lund Lund University Lund 22185 Sweden

5. Neuroradiology, Medical Imaging Department Skåne University Hospital Lund 22185 Sweden

6. MAX IV Laboratory Lund University Lund 22100 Sweden

7. Clinical Sciences Malmö Lund University Malmö 20502 Sweden

8. Cardiology Skåne University Hospital Malmö 20502 Sweden

Abstract

This study employs computational algorithms to automatically identify and classify features in X‐Ray fluorescence (XRF) microscopy images. Principal component analysis (PCA) and unsupervised machine learning algorithms, such as Gaussian mixture (GM) clustering, are implemented to label features on a collection of XRF maps of human atherosclerotic plaque samples. The investigation involves the hard X‐Ray nanoprobe (NanoMAX) at MAX IV synchrotron radiation facility, utilizing scanning transmission X‐Ray microscopy (STXM) and XRF techniques. The analysis covers regions of interest scanned by the beam with a step size of 200 nm, yielding XRF maps of elements like calcium, iron, and zinc. These maps reveal intricate structures unsuitable for manual labeling. However, they can be accurately classified in an automated fashion using GM. Prior to clustering, PCA is used to deal with repeated patterns and background areas. The resulting clusters are associated with different types of features, which can be identified as specific tissues confirmed by histology. Regions of high concentrations of phosphorus, sulfur, calcium, and iron are found in the samples. These regions are also observed in the STXM results as spots of low transmission that typically are associated with calcium deposits only.

Funder

Vetenskapsrådet

HORIZON EUROPE European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3