Audio Classification with Skyrmion Reservoirs

Author:

Msiska Robin1ORCID,Love Jake1,Mulkers Jeroen2,Leliaert Jonathan2,Everschor-Sitte Karin1

Affiliation:

1. Faculty of Physics and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany

2. Department of Solid State Sciences Ghent University 9000 Ghent Belgium

Abstract

Physical reservoir computing is a computational paradigm that enables spatiotemporal pattern recognition to be performed directly in matter. The use of physical matter leads the way toward energy‐efficient devices capable of solving machine learning problems without having to build a system of millions of interconnected neurons. Proposed herein is a high‐performance “skyrmion mixture reservoir” that implements the reservoir computing model with multidimensional inputs. This implementation solves spoken digit classification tasks with an overall model accuracy of 97.4% and a < 1% word error ratethe best performance ever reported for in materio reservoir computers. Due to the quality of the results and the low‐power properties of magnetic texture reservoirs, it is evident that skyrmion fabrics are a compelling candidate for reservoir computing.

Funder

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

General Medicine

Reference38 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circular motion of noncollinear spin textures in Corbino disks: Dynamics of Néel- versus Bloch-type skyrmions and skyrmioniums;Physical Review B;2024-08-05

2. Analysing Digits with Sequential Convolutional Neural Networks and Adam Optimizer;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. Topological magnetic and ferroelectric systems for reservoir computing;Nature Reviews Physics;2024-06-25

4. Exploring Numerical Analysis with Sequential Convolutional Neural Networks Leveraging Adam Optimization Technique;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

5. Simulation-trained machine learning models for Lorentz transmission electron microscopy;APL Machine Learning;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3