FI‐Net: Rethinking Feature Interactions for Medical Image Segmentation

Author:

Ding Yuhan1,Liu Jinhui2,He Yunbo2,Huang Jinliang2,Liang Haisu2,Yi Zhenglin2ORCID,Wang Yongjie34ORCID

Affiliation:

1. School of Computer Science and Engineering Central South University Changsha 410000 China

2. Departments of Urology Xiangya Hospital Central South University Changsha 410008 China

3. Department of Burns and Plastic Surgery Xiangya Hospital Central South University Changsha 410008 China

4. National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 China

Abstract

To solve the problems of existing hybrid networks based on convolutional neural networks (CNN) and Transformers, we propose a new encoder–decoder network FI‐Net based on CNN‐Transformer for medical image segmentation. In the encoder part, a dual‐stream encoder is used to capture local details and long‐range dependencies. Moreover, the attentional feature fusion module is used to perform interactive feature fusion of dual‐branch features, maximizing the retention of local details and global semantic information in medical images. At the same time, the multi‐scale feature aggregation module is used to aggregate local information and capture multi‐scale context to mine more semantic details. The multi‐level feature bridging module is used in skip connections to bridge multi‐level features and mask information to assist multi‐scale feature interaction. Experimental results on seven public medical image datasets fully demonstrate the effectiveness and advancement of our method. In future work, we plan to extend FI‐Net to support 3D medical image segmentation tasks and combine self‐supervised learning and knowledge distillation to alleviate the overfitting problem of limited data training.

Funder

Natural Science Foundation of Hunan Province

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

Reference46 articles.

1. J.Cheng C.Gao F.Wang M.Zhu inInt. Conf. on Medical Image Computing and Computer‐Assisted Intervention Springer2023 pp.64–74.

2. Fundamentals of Medical Imaging

3. J.Long E.Shelhamer T.Darrell inProc. of the IEEE Conf. on Computer Vision and Pattern Recognition2015 pp.3431–3440.

4. O.Ronneberger P.Fischer T.Brox inMedical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th Int. Conf. Munich Germany October 5–9 2015 Proc. Part III 18 Springer2015 pp.234–241.

5. O.Oktay J.Schlemper L. L.Folgoc M.Lee M.Heinrich K.Misawa K.Mori S.McDonagh N. Y.Hammerla B.Kainz et al. (Preprint) arXiv:1804.03999 v1 submitted: Apr.2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3