A Novel Untethered Robotic Fish with an Actively Deformable Caudal Fin

Author:

Xu Yaohui12,Dong Bingbing134,Zheng Changzhen15,Zuo Qiyang1,He Kai1,Xie Fengran6ORCID

Affiliation:

1. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. School of Computer Science and Control Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Key Laboratory of Metallurgical Equipment and Control Technology Ministry of Education Wuhan University of Science and Technology Wuhan 430081 China

4. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering Wuhan University of Science and Technology Wuhan 430081 China

5. College of Mechanical Engineering Guangxi University Nanning 530004 China

6. School of Artificial Intelligence Shenzhen Polytechnic Shenzhen 518055 China

Abstract

Based on the observation that live fish caudal fins exhibit softness, flexibility, and active deformation, which are essential for generating thrust, stability, and maneuverability, herein, a comprehensive study on a novel type of bionic robotic fish with an actively deformable caudal fin is presented. The article first presents the design of the robot. Next, the quasisteady model theory is used to establish the hydrodynamic force for modeling the deformable caudal fin. Furthermore, three deformation modes are studied and compared: the conventional nondeformable mode, the sine‐based mode, and the instantaneous mode. Finally, a series of extensive experiments are conducted to evaluate various performance metrics of this innovative untethered biomimetic robotic fish, including thrust, swimming speed, yaw stability, turning radius, and turning rate. The results demonstrate that the introduction of active deformation of the caudal fin significantly enhances the swimming performance in the aforementioned indices when compared to the conventional nondeformable mode. Notably, the instantaneous mode exhibits best performance in terms of thrust, swimming speed, turning radius, and turning rate, while the sine‐based mode demonstrates the best yaw stability. Consequently, this research contributes to the advancement of robotic fish design and the development of underwater biomimetic robots.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3