Deep Imitation Learning for Optimal Trajectory Planning and Initial Condition Optimization for an Unstable Dynamic System

Author:

Chen Bo-Hsun1,Lin Pei-Chun1ORCID

Affiliation:

1. Department of Mechanical Engineering National Taiwan University (NTU) No.1 Roosevelt Rd. Sec.4 Taipei 106 Taiwan

Abstract

In this article, an innovative offline deep imitation learning algorithm for optimal trajectory planning is proposed. While many state‐of‐the‐art works achieved optimal trajectory planning, their systems were stable or quasistable, and their approaches rarely optimized the system's initial conditions (ICs). Here, a new unstable dynamic system task called “internal sliding object stabilization control” is proposed, modeled, and solved by deep imitation learning. Given the system's ICs, the neural networks (NNs) can imitate the iterative linear quadratic regulator (iLQR), generate optimal trajectories, and compute faster. A proportional–integral–derivative (PID) controller is used to track the unstable trajectories. Leveraging on the gradients of NNs, it can optimize the system's ICs, avoid obstacles stepwise, and ensure the worst bounds of NNs for safety. Subsequently, thorough simulations are conducted, including comparing the iLQR and PID controllers in the task, optimizing the system's different ICs by gradient descent, and finding the worst bound of the performance by gradient ascent. Results show that the proposed algorithm achieves considerably improved performance. Finally, experiments are conducted with a real manipulator to compare the proposed structure with the original iLQR. Results indicate that the proposed algorithm resembles the iLQR well. Program code and experiment results are in https://github.com/DanielYamChen/ISOSC.git.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3