An Artificial Intelligence‐Motivated Skin‐Like Optical Fiber Tactile Sensor

Author:

Li Tianliang1ORCID,Su Yifei1,Zheng Han1,Chen Fayin1,Li Xiong2,Tan Yuegang1,Zhou Zude1

Affiliation:

1. School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China

2. Tencent Robotics X Lab Tencent Technology (Shenzhen) Company Ltd. Shenzhen 518064 China

Abstract

Soft and stretchable tactile sensors have received extensive attention for their potential applications in wearables, human–robot interaction, and intelligent robots. Herein, inspired by the functions of skin somatosensory signal generation and processing, an artificial intelligence‐motivated skin‐like optical fiber tactile (SOFT) sensor is proposed. It features multifunctional touch interaction capabilities including tactile amplitude and position and tensile strain. Four fiber Bragg gratings (FBGs) are embedded in a skin‐like three‐layer laminate structure of the SOFT sensor, forming a flexible tactile sensing array with a stretchability larger than 20%. Fusing the two‐level cascaded neural network, the position and magnitude of the contact force can be distinguished simultaneously. The recognition accuracy for contact position is up to 92.41% and the error is less than 4.2% within the force range of 0–3.5 N. Several SOFT sensor‐based interactive applications including pressure password interface and music playback are achieved by combining the artificial intelligence spatiotemporal dynamic logic analysis. Furthermore, the sensor is also capable of complex scenes involving tension and tactile sensing, such as dexterous hand perception and human–robot interaction control. This work provides novel insights into artificial intelligence‐based integrated skin that shows broad promise in intelligent prosthetics and bionic robotic.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3