Independently Actuated Soft Magnetic Manipulators for Bimanual Operations in Confined Anatomical Cavities

Author:

Koszowska Zaneta1ORCID,Brockdorff Michael1,da Veiga Tomas1,Pittiglio Giovanni2,Lloyd Peter1,Khan-White Thomas3,Harris Russell A.4,Moor James W.5,Chandler James H.1,Valdastri Pietro1ORCID

Affiliation:

1. Storm Lab UK School of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UK

2. Department of Cardiovascular Surgery Boston Children's Hospital Harvard Medical School Boston MA 02115 USA

3. School of Medicine Leeds Institute of Medical Research at St James's Faculty of Medicine and Health University of Leeds Leeds LS9 7TF UK

4. Future Manufacturing Processes Research Group University of Leeds Leeds LS2 9JT UK

5. ENT Department Leeds Teaching Hospitals NHS Trust Leeds LS1 3EX UK

Abstract

Soft magnetic manipulators offer the prospect of improved surgical outcomes through their potential for miniaturization and inherently safe tissue interaction. However, independent actuation of multiple manipulators within the same confined workspace is limited by undesired simultaneous actuation and manipulator–manipulator interactions. Herein, for the first time, approaches for the independent magnetic actuation of two magnetic continuum manipulators within the same confined workspace are proposed. A novel modular magnetic soft robot segment design is proposed with modified geometry to provide preferential bending planes and high angles of deflection. This design is integrated into two dual‐segment magnetic manipulators which, when arranged in parallel, can deliver independent bending in two planes of motion. Two distinct independent control strategies are proposed, based on orthogonal manipulator magnetization profiles and local field gradient control, respectively. Each dual‐manipulator configuration is characterized over a sequence of applied magnetic fields and gradients, induced via a dual robotically controlled external permanent magnet system. Manipulator independence, bending range of motion, and twisting behaviors are evaluated as a function of control strategy and manipulator separation distance. To demonstrate the system's potential in clinical scenarios, a dual‐manipulator configuration is adapted to carry an endoscopic camera and optic fiber, respectively. The resultant bimanual system is deployed in the confined anatomy of a skull‐base phantom to simulate minimally invasive ablation of a pituitary adenoma. Independent motion of the camera and tool within the confined workspace demonstrate the potential for an independent magnetic tool manipulation for surgical applications.

Funder

Engineering and Physical Sciences Research Council

HORIZON EUROPE European Research Council

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3