Affiliation:
1. Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research Center Seoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 South Korea
Abstract
Spiking neural networks (SNNs) have emerged as a novel approach for reducing computational costs by mimicking the biologically plausible operations of neurons and synapses. In this article, large‐scale analog SNNs are investigated and optimized at the hardware‐level by using SNNSim, the novel simulator for SNNs that employ analog synaptic devices and integrate‐and‐fire (I&F) neuron circuits. SNNSim is a reconfigurable simulator that accurately and very quickly models the behavior of the user‐defined device characteristics and returns key metrics such as area, accuracy, latency, and power consumption as output. Notably, SNNSim exhibits exceptional efficiency, as it can process the entire 10 000 Modified National Institute of Standards and Technology (MNIST) test dataset in a few seconds, whereas SPICE simulations require hours to simulate a single MNIST test data. Using SNNSim, the conversion of artificial neural networks (ANNs) to SNNs is simulated and the performance of the large‐scale analog SNNs is optimized. The results enable the design of accurate, high‐speed, and low‐power operation of large‐scale SNNs. SNNSim code is now available at https://github.com/SMDLGITHUB/SNNSim.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献