Analysis of Electrochemical Impedance Data: Use of Deep Neural Networks

Author:

Doonyapisut Dulyawat1,Kannan Padmanathan-Karthick2,Kim Byeongkyu1,Kim Jung Kyu1,Lee Eunseok3,Chung Chan-Hwa1ORCID

Affiliation:

1. School of Chemical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

2. Department of Chemistry Sungkyunkwan University Suwon 16419 Republic of Korea

3. College of Computing and Informatics Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

Technology advancements in energy storage, photocatalysis, and sensors have generated enormous impedimetric data. Electrochemical impedance spectroscopy (EIS) results play an essential role in analyzing the interfacial properties of materials. Nonetheless, in many situations, the data is misinterpreted due to the complexity of the electrochemical system or the compromise between the experimental result and the theoretical model, resulting in partiality in the interpretation process, especially for the impedimetric results. Typically, the experimenter interprets impedimetric results using a searching approach based on a theoretical model until the best‐fitting model is obtained, which is a time‐consuming process, and errors can occur. To reduce misinterpretation by the experimenter, herein, the machine‐learning strategy is demonstrated for the classification of an EIS circuit model and parameter prediction using a deep neural network (DNN). The DNN model shows a highly accurate classifier for the commonly used EIS circuit with an average area under the receiver operating characteristic curve of more than 0.95. Additionally, the model demonstrates high accuracy in the prediction of EIS parameters on a complex EIS system, with a maximum R2 of 0.999. These reveal that the machine‐learning strategy may open a new room for studying electrochemical systems.

Funder

National Research Foundation of Korea

Sungkyunkwan University

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep generative learning for exploration in large electrochemical impedance dataset;Engineering Applications of Artificial Intelligence;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3