Affiliation:
1. Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
2. Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health Sun Yat‐sen University Guangzhou China
3. Department of Cardiology The Sixth Affiliated Hospital of South China University of Technology Foshan China
Abstract
AbstractCurcumin is a polyphenol extracted from the rhizome of turmeric, and our previous research showed that curcumin inhibited cholesterol absorption and had cholesterol‐lowering effect. Bisphenol A (BPA), a common plasticizer, is widely used in the manufacture of food packaging and is associated with non‐alcoholic fatty liver disease (NAFLD). We hypothesized that curcumin could protect against BPA‐induced hepatic steatosis by inhibiting cholesterol absorption and synthesis. Male CD‐1 mice fed BPA‐contaminated diet with or without curcumin for 24 weeks were used to test our hypothesis. We found that chronic low‐dose BPA exposure significantly increased the levels of serum triglyceride (TG), total cholesterol (TC), and low‐density lipoprotein cholesterol and the contents of liver TG and TC, resulting in liver fat accumulation and hepatic steatosis while curcumin supplementation could alleviate BPA‐induced dyslipidemia and hepatic steatosis. Moreover, the anti‐steatosis and cholesterol‐lowering effects of curcumin against BPA coincided with a significant reduction in intestinal cholesterol absorption and liver cholesterol synthesis, which was modulated by suppressing the expression of sterol regulatory element‐binding protein‐2 (SREBP‐2), Niemann–Pick C1‐like 1 (NPC1L1), and 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase (HMGCR) in the small intestine and liver. In addition, the expression levels of liver lipogenic genes such as liver X receptor alpha (LXRα), SREBP‐1c, acetyl‐CoA carboxylase 1 (ACC1), and ACC2 were also markedly down‐regulated by curcumin. Overall, our findings indicated that curcumin inhibited BPA‐induced intestinal cholesterol absorption and liver cholesterol synthesis by suppressing SREBP‐2, NPC1L1, and HMGCR expression, subsequently reducing liver cholesterol accumulation and fat synthesis, thereby preventing hepatic steatosis and NAFLD.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献