Using graph theory as a common language to combine neural structure and function in models of healthy cognitive performance

Author:

Litwińczuk Marta Czime1ORCID,Muhlert Nils1ORCID,Trujillo‐Barreto Nelson1ORCID,Woollams Anna1ORCID

Affiliation:

1. Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK

Abstract

AbstractGraph theory has been used in cognitive neuroscience to understand how organisational properties of structural and functional brain networks relate to cognitive function. Graph theory may bridge the gap in integration of structural and functional connectivity by introducing common measures of network characteristics. However, the explanatory and predictive value of combined structural and functional graph theory have not been investigated in modelling of cognitive performance of healthy adults. In this work, a Principal Component Regression approach with embedded Step‐Wise Regression was used to fit multiple regression models of Executive Function, Self‐regulation, Language, Encoding and Sequence Processing with a collection of 20 different graph theoretic measures of structural and functional network organisation used as regressors. The predictive ability of graph theory‐based models was compared to that of connectivity‐based models. The present work shows that using combinations of graph theory metrics to predict cognition in healthy populations does not produce a consistent benefit relative to making predictions based on structural and functional connectivity values directly.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3