Hazard‐consistent simulated earthquake ground motions for PBEE applications on stiff soil and rock sites

Author:

Alvarez‐Sanchez Luis Guillermo12ORCID,Iñárritu Pablo García de Quevedo1,Šipčić Nevena1,Kohrangi Mohsen3ORCID,Bazzurro Paolo1

Affiliation:

1. University School for Advanced Studies IUSS Pavia Italy

2. Université Gustave Eiffel Paris France

3. RED Risk Engineering + Development Pavia Italy

Abstract

AbstractGround motion record selection is a standard step in state‐of‐the‐art performance‐based earthquake engineering (PBEE) applications. It links the structural response to seismic hazard of the site of interest. In this process, suites of hazard‐consistent ground motion recordings of a wide range of intensity levels are selected (and often scaled) from a database of ground motions to be used as input to nonlinear dynamic response analysis. The ideal practice would be to select ground motions from a database of recorded accelerograms in such a way that they are consistent with the seismic hazard at as many intensity measure (IM) levels as possible and for all important causative scenarios. However, the available databases are not heavily populated, especially for the large‐magnitude short‐distance scenarios. Therefore, synthetic ground motions are the natural candidates to enlarge the database of recordings for scenarios that are important to the site hazard but lack, completely or partially, recorded accelerograms. The usage of such recordings, however, can be recommended only after they are proven to be “realistic” through a battery of seismological and statistical tests. In this study, we propose and implement a multi‐fold testing framework for such an evaluation. We first generate a ground motion database of simulated ground motions (SDB) whose values of the parameters of the causative earthquakes are, to the extent possible, the same of those that caused the ground motions in a mirror database of recorded ground motions (RDB). We then utilize the conditional spectrum (CS) approach computed for a hypothetical rock site in Perugia, Italy, to select hazard consistent records separately from the RDB and SDB databases. A comprehensive set of comparisons of distributions of several IMs, computed from the selected sets, and of distributions of engineering demand parameters (EDPs), that such record sets induce on simple SDoF structures suggests the adequacy of using the proposed simulated ground motions for structural response analyses of structures on stiff and rock sites.

Funder

Association Nationale de la Recherche et de la Technologie

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3