Comprehensive exploration on transfer and human health risk of potential toxic element in soil‐rice system from the Pearl River Delta

Author:

Huang Changchen1,Hou Qingye1ORCID,Yang Zhongfang1,Yu Tao2,You Yuanhang1,Wu Zhiliang1

Affiliation:

1. School of Earth Sciences and Resources China University of Geosciences Beijing China

2. School of Science China University of Geosciences Beijing China

Abstract

AbstractThe transfers of potential toxic elements (PTEs) from root soil to rice grains and its driving factors are of major worldwide concern. And it is still not clear whether the parent material has influence on the transfers of PTEs in soil. Thus, the aim of this study is to investigate the transfers of PTEs in soil‐rice system from different parent materials area, identify its driving factors and evaluate human health risk. 157 sets of root soil and rice grains samples collected from the areas with quaternary sediments, acidic magmatic rocks and terrigenous clastic rocks in the Pearl River Delta, China. Pearson correlation analysis, discriminant analysis, redundancy analysis, path analysis and human health risk model were utilized for data processing and analysis. The results reveal that parent materials play a primary role affecting the transfers of PTEs in soil‐rice system, and its influence on transfers of PTEs is achieved by governing physicochemical properties of soil. And physicochemical parameters like MgO, SiO2, Al2O3, TFe2O3, and organic matter (OM) exerted significant influence on transfers of PTEs. The influences of some physicochemical parameters on the transfers of PTEs are most significantly in the area of quaternary sediments. The values of the total non‐carcinogenic and the total carcinogenic risks for children and adults caused by rice consumption are much higher than the corresponding risk limits, and the main contributing elements are Pb, As, and As, Cd, respectively. The human health risks caused by rice consumption are greatest in the area with quaternary sediments.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference40 articles.

1. Retraction Note to: Heavy metal pollution in surface soils of Pearl River Delta, China

2. Chloride in Soils and its Uptake and Movement within the Plant: A Review

3. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China

4. Department of Agriculture and Rural Affairs of Guangdong Province. (2022).Technical Guidance on the Whole Process Mechanization of early Rice Production in Guangdong Province (Trial) (in Chinese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3